What is the derivative of #y = secx/tanx#?

1 Answer
Oct 28, 2016

#y' = -cotxcscx#

Explanation:

Let's rewrite the function #y = secx/tanx# in sine and cosine.

#y = secx/tanx#

Apply the identities #sectheta = 1/costheta# and #tantheta = sintheta/costheta#.

#y = (1/cosx)/(sinx/cosx)#

#y = 1/cosx xx cosx/sinx#

#y = 1/sinx#

We can now use the quotient rule to differentiate.

#y' = (0 xx sinx - cosx xx 1)/(sinx)^2#

#y' = -cosx/sin^2x#

#y' = -cosx/sinx xx 1/sinx#

Apply the identities #cosx/sinx = cotx# and #1/sinx = cscx#.

#y' = -cotxcscx#

Hopefully this helps!