How do you solve #5tan3x-5=0# and find all solutions in the interval #[0,2pi)#?

2 Answers
Oct 29, 2016

In the given interval Solution: #x =pi/12; x=(5pi)/12; x= (9pi)/12 ; x= (13pi)/12 ; x= (17pi)/12 ; x= (21pi)/12 ;#

Explanation:

#5 tan 3x -5=0 or 5 tan 3x = 5 or tan 3x =1 # We know #tan (pi/4)=1 :.3x =pi/4# also #tan (pi+pi/4)=1 or tan ((5pi)/4)=1 :. 3x=(5pi)/4 #

The given interval for #x# is #[0,2pi)#. New interval for #3x# is #[0,6pi)#. so in the interval #[0,6pi)#.

#3x =pi/4; 3x=(5pi)/4; 3x= pi/4+2pi=(9pi)/4 ; 3x= (5pi)/4+2pi=(13pi)/4 ; 3x= pi/4+4pi=(17pi)/4 ; 3x= (5pi)/4+4pi=(21pi)/4 ; #

Solution:#x =pi/12; x=(5pi)/12; x= (9pi)/12 ; x= (13pi)/12 ; x= (17pi)/12 ; x= (21pi)/12 ;# [Ans]

Oct 29, 2016

As #tan 3x =1 = tan( pi/4)#, the general solution is

#3x=kpi+pi/4 to x = kpi/3+pi/12, k = 0, +-1, +-2, +-3, ...#

Upon setting, k = 0, 1, 2, 3, 4 and 5

#x = pi/4, 5/4pi, 9/4pi, 13/4pi,17/4pi and 21/4pi in [0, 2pi]#.