How do you integrate #int (x^3-x^2-5x )/( x^2-3x+2)# using partial fractions?

1 Answer
Oct 29, 2016

The integral is #=x^2/2+2x+5ln(x-1)-6ln(x-2)+C#

Explanation:

As the degree of the numerator is greater than the denominator, let's do a long division
#x^3-x^2-5x##color(white)(aaaaaa)##∣##x^2-3x+2#
#x^3-3x^2+2x##color(white)(aaaaa)##∣##x+2#
#0+2x^2-7x#
#color(white)(aaaa)##2x^2-6x+4#
#color(white)(aaaaaa)##0-x-4#

We can factorise the denominator
#x^2-3x+2=(x-1)(x-2)#

So putting all together
#(x^3-x^2-5x)/(x^2-3x+2)=x+2+(-x-4)/(x^2-3x+2)#

Going to the decomposition into partial fractions
#(-x-4)/(x^2-3x+2)=(-x-4)/((x-1)(x-2))=A/(x-1)+B/(x-2)#
So #-x-4=A(x-2)+B(x-1)#
let #x=1##=>##-5=-A# so #A=5#
let #x=2##=>##-6=B# so #B=-6#
And we have
#(x^3-x^2-5x)/(x^2-3x+2)=x+2+5/(x-1)-6/(x-2)#
and the integral is
#int((x^3-x^2-5x)dx)/(x^2-3x+2)=int(x+2+5/(x-1)-6/(x-2))dx#
#=x^2/2+2x+5ln(x-1)-6ln(x-2)+C#