Question #b42d1

1 Answer
Oct 31, 2016

Ans : #x=0,+1 and -1#

Explanation:

Solve
#sin^-1((ax)/c) + sin^-1( (bx)/c) = sin^-1( x )#where a²+b²=c² and c≠0

#sin^-1((ax)/c) + sin^-1( (bx)/c) = sin^-1( x )#

#=>sin^-1{((ax)/c)sqrt(1-( (bx)/c)^2)+( (bx)/c)sqrt(1-( (ax)/c)^2)} = sin^-1( x )#

#=>{((ax)/c)sqrt(1-( (bx)/c)^2)+( (bx)/c)sqrt(1-( (ax)/c)^2)}^2 = x^2 #

#=>((ax)/c)^2(1-( (bx)/c)^2)+( (bx)/c)^2(1-( (ax)/c)^2)+2((ax)/c)sqrt(1-( (bx)/c)^2) ((bx)/c)sqrt(1-( (ax)/c)^2) = x^2 #

#=>((a^2+b^2))/c^2x^2-(2a^2b^2x^4)/c^4+2((ax)/c)sqrt(1-( (bx)/c)^2) ((bx)/c)sqrt(1-( (ax)/c)^2) = x^2 #

#=>c^2/c^2x^2-(2a^2b^2x^4)/c^4+2((ax)/c)sqrt(1-( (bx)/c)^2) ((bx)/c)sqrt(1-( (ax)/c)^2) = x^2 #

#=>2((ax)/c)sqrt(1-( (bx)/c)^2) ((bx)/c)sqrt(1-( (ax)/c)^2) = (2a^2b^2x^4)/c^4 #

#=>x^2sqrt(1-( (bx)/c)^2) sqrt(1-( (ax)/c)^2) - (abx^4)/c^2=0 #

#=>x^2[sqrt(1-( (bx)/c)^2) sqrt(1-( (ax)/c)^2) - (abx^2)/c^2]=0 #

so #x^2=0=>x=0#

And

#=>sqrt(1-( (bx)/c)^2) sqrt(1-( (ax)/c)^2)= (abx^2)/c^2 #

#=>1-((a^2+b^2))/c^2x^2+cancel((a^2b^2x^4)/c^2)= cancel((a^2b^2x^4)/c^2#

#=>x^2-1=0#

#=>x=+-1#

Ans : #x=0,+1 and -1#