How do you differentiate #f(x)=sqrt((1-sinx)/(1+sinx))#?
1 Answer
# f'(x) = -( cosx) / ((1+sinx)^2) sqrt((1+sinx)/(1-sinx))#
Explanation:
Let
The LHS can be differentiated implicit, and the RHS can be differentiated using the quotient rule:
If you are studying maths, then you should learn the Quotient Rule for Differentiation, and practice how to use it:
# d/dx(u/v) = (v(du)/dx-u(dv)/dx)/v^2 # , or less formally,# (u/v)' = (v(du)-u(dv))/v^2 #
I was taught to remember the rule in word; " vdu minus udv all over v squared ". To help with the ordering I was taught to remember the acronym, VDU as in Visual Display Unit.
So with
# 2ydy/dx = ( (1+sinx)(d/dx(1-sinx)) - (1-sinx)(d/dx(1+sinx)) ) / (1+sinx)^2 # :.
# 2ydy/dx = ( (1+sinx)(-cosx) - (1-sinx)(cosx) ) / (1+sinx)^2 #
:.# 2ydy/dx = ( -cosx-sinxcosx-cosx+sinxcosx ) / (1+sinx)^2 #
:.# 2ydy/dx = ( -2cosx) / (1+sinx)^2 #
:.# ydy/dx = -( cosx) / (1+sinx)^2 #
:.# (sqrt((1-sinx)/(1+sinx)))dy/dx = -( cosx) / (1+sinx)^2 #
:.# dy/dx = -( cosx) / ((1+sinx)^2sqrt((1-sinx)/(1+sinx))) #
:.# dy/dx = -( cosx) / ((1+sinx)^2) sqrt((1+sinx)/(1-sinx))#