What is the cross product of #[2, 6, -1]# and #[1, 1, 18] #?

1 Answer
Nov 6, 2016

The cross product is #〈109,-37,-4〉#

Explanation:

The cross product of the 2 vectors is given by the determinant

#∣((veci,vecj,veck),(2,6,-1),(1,1,18))∣#

#=veci(108+1)-vecj(36+1)+veck(2-6)#

#109veci-37vecj-4veck#
So the cross product is #〈109,-37,-4〉#

Verifications, the dots products must #=0#

So, #〈109,-37,-4〉.〈2,6,-1〉=218-222+4=0#

#〈109,-37,-4〉.〈1,1,18〉=109-37-72=0#
So the cross product is perpendicular to the two vectors