How do you integrate #int dx/sqrt(16+x^2)^2# by trigonometric substitution?
1 Answer
Assuming you meant:
Let
#=int(4sec^2thetacolor(white).d theta)/sqrt(16+16tan^2theta)=4/sqrt16intsec^2theta/sqrt(1+tan^2theta)d theta#
Recall that
#=intsec^2theta/secthetad theta=intsecthetacolor(white).d theta=lnabs(tantheta+sectheta)+C#
Rewriting in terms of tangent since our substitution is
#=lnabs(tantheta+sqrt(1+tan^2theta))+C=lnabs(x/4+sqrt(1+x^2/16))+C#
#=lnabs(x/4+1/4sqrt(16+x^2))+C#
Factoring the
#=lnabs(x+sqrt(16+x^2))+C#
Assuming you meant:
The square root and the exponent cancel, leaving just:
#=intdx/(16+x^2)#
Now use the same substitution as before,
#=int(4sec^2thetacolor(white).d theta)/(16+16tan^2theta)=1/4intsec^2theta/(1+tan^2theta)d theta=1/4intd theta#
#=1/4theta+C#
From the substitution
#=1/4arctan(x/4)+C#