How do you do this calculus 1 question?

Find the linearization L(x) of the function g(x)=xf(x^2) at x=2 given the following information.
f(2)=1 f′(2)=10 f(4)=5 f′(4)=−3

1 Answer
Nov 11, 2016

#L(x)=10-19(x-2)#

Explanation:

To find L(x) for a function #g(x)# at a point #a# you use this equation:
#L(x)=g(a)+g'(a)(x-a)#
The point we want is #a=2# so we need to find #g(2)# and #g'(2)#.
#g(2)=2*f(2^2)#
#g(2)=2*f(4)#
because #f(4)=5#,
#g(2)=2*5#
#g(2)=10#

To fill in the last number, we must find #g'(x)#
The product rule says if #h(x)=g(x)\cdotf(x)# then #h'(x)=g'(x)\cdotf(x)+f'(x)\cdotg(x)#, so:
#g'(x)=x\cdotd/dx[f(x^2)]+1\cdotf(x^2)#
The chain rule says the derivative of a function, #f(u)#, is: #f'(u)*(du)/dx#, where #u# can be some other function. Using this, we can remove the #d/dx# in the above problem:
#g'(x)=x*f'(x^2)*d/dxx^2+f(x^2)#
Using the power rule and then simplifying:
#g'(x)=x*f'(x^2)*2x+f(x^2)#
#g'(x)=2x^2*f'(x^2)+f(x^2)#

Next, plug in #x=2#:
#g'(2)=2(2)^2*f'(2^2)+f(2^2)#
#g'(2)=8*f'(4)+f(4)#
#f'(4)=-3# and #f(4)=5#, so:
#g'(2)=8*(-3)+5#
#g'(2)=-19#

Next add everything back into the original equation:
#L(x)=10-19(x-2)#