How do you use the definition of the scalar product, find the angles between the following pairs of vectors: A = -i - 2k and B = - 5i + 5j + 5k?

1 Answer
Nov 11, 2016

The angle is #=105º#

Explanation:

The dot product of #vecA# and #vecB#
is given by #vecA.vecB=∥vecA∥.∥vecB∥costheta#
where #theta# is the angle between the 2 vectors.
Here, #vecA=〈-1,0,-2〉# and #vecB=〈-5,5,5〉#

The dot product #vecA.vecB=〈-1,0,-2〉.〈-5,5,5〉=5+0-10=-5#

The modulus of #vecA=∥〈-1,0,-2〉∥=sqrt(1+0+4)=sqrt5#

The modulus of #vecB=∥〈-5,5,5〉∥=sqrt(25+25+25)=sqrt75#

#cos theta=(vecA.vecB)/(∥vecA∥.∥vecB∥)=-5/(sqrt5*sqrt75)=-1/sqrt15=-0.258#

#theta=105º#