How do you find a numerical value of one trigonometric function of x given #(1+tanx)/(1+cotx)=2#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Nov 12, 2016 #x=1.107148718+pin# Explanation: #(1+tanx)/(1+cotx) = 2# #(1+tanx)/(1+1/tanx) = 2# #(1+tanx)/((tanx+1)/tanx) = 2# #(1+tanx)*tanx/(tanx+1) = 2# #cancel(1+tanx)*tanx/cancel(tanx+1) = 2# #tanx=2# #x=tan^-1 2# #x=1.107148718+pin# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 11414 views around the world You can reuse this answer Creative Commons License