#sinx+sin^2x+sin^3x#=1 the what is #cos^6x -4cos^4x+8cos^2x#=? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Nov 14, 2016 Given relation #sinx+sin^2x+sin^3x=1# #=>sinx+sin^3x=1-sin^2x# #=>(sinx+sin^3x)^2=(1-sin^2x)^2# #=>sin^2x+sin^6x+2sin^4x=cos^4x# #=> 1-cos^2x+(1-cos^2x)^3+2(1-cos^2x)^2=cos^4x# #=> 1-cos^2x+1-3cos^2x+3cos^4x-cos^6x+2-4cos^2x+2cos^4x=cos^4x# #=>cos^6x-4cos^4x+8cos^2x=4# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 36188 views around the world You can reuse this answer Creative Commons License