What is the Cartesian form of #(-16,(-23pi)/4))#?

1 Answer
Nov 15, 2016

(-#16/sqrt2, -16/sqrt2#)

Explanation:

The given point is r= -16 and #theta=(-23pi)/4#

The cartesian coordinates would be x= #rcostheta# and y = #r sin theta#

Accordingly, x= #-16 cos ((-23pi)/4)# and y= #-16sin((-23pi)/4)#

Hence x= -16 cos #-(6pi-pi/4)# and y=-16sin #-(6pi-pi/4)#

x= -16cos #(6pi-pi/4)# and y= 16sin #(6pi-pi/4)#

x=-16 cos#(-pi/4)# and y= 16 sin #-(pi/4)#

x= -16 cos #pi/4# and y= -16 #sin pi/4#

x=-#16/sqrt2# and y= -#16/sqrt2#