How do I find the derivative of #x^8*ln(x)#?

1 Answer
Nov 15, 2016

#x^7(1+8lnx)#

Explanation:

differentiate using the #color(blue)"product rule"#

#" If " f(x)=g(x).h(x)" then"#

#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=g(x).h'(x)+h(x).g'(x))color(white)(2/2)|)))#

here #g(x)=x^8rArrg'(x)=8x^7#

and #h(x)=lnxrArrh'(x)=1/x#

#rArrf'(x)=(x^8 xx1/x)+(lnx xx8x^7)#

#=x^7+8x^7lnx=x^7(1+8lnx)#