How do you simplify #(-4cosxsinx+2cos2x)^2+(2cos2x+4sinxcosx)^2#? Trigonometry Trigonometric Identities and Equations Double Angle Identities 1 Answer Shwetank Mauria Nov 20, 2016 #(-4cosxsinx+2cos2x)^2+(2cos2x+4cosxsinx)^2=8# Explanation: To solve #(-4cosxsinx+2cos2x)^2+(2cos2x+4cosxsinx)^2#, Let us assume #2sin2x=4cosxsinx=a# and #2cos2x=b#, then above can be written as #(b-a)^2+(b+a)^2# (note #-2ab# and #+2ab# cancel out) = #2b^2+2a^2# = #2(2sin2x)^2+2(2cos2x)^2# = #8sin^2 2x+8cos^2 2x# = #8# Answer link Related questions What are Double Angle Identities? How do you use a double angle identity to find the exact value of each expression? How do you use a double-angle identity to find the exact value of sin 120°? How do you use double angle identities to solve equations? How do you find all solutions for #sin 2x = cos x# for the interval #[0,2pi]#? How do you find all solutions for #4sinthetacostheta=sqrt(3)# for the interval #[0,2pi]#? How do you simplify #cosx(2sinx + cosx)-sin^2x#? If #tan x = 0.3#, then how do you find tan 2x? If #sin x= 5/3#, what is the sin 2x equal to? How do you prove #cos2A = 2cos^2 A - 1#? See all questions in Double Angle Identities Impact of this question 3955 views around the world You can reuse this answer Creative Commons License