How do you use the limit comparison test to determine if #Sigma n/((n+1)2^(n-1))# from #[1,oo)# is convergent or divergent?
1 Answer
Nov 20, 2016
#sum_(n=1)^oon/((n+1)2^(n-1))#
Rewriting this:
#=sum_(n=1)^oon/(n+1)1/(2^(n-1))=sum_(n=1)^oon/(n+1)1/(2^n/2)=sum_(n=1)^oon/(n+1)2/2^n#
Bringing the
#=2sum_(n=1)^oon/(n+1)(1/2)^n#
We should recognize that
Also note that when
#n/(n+1)(1/2)^n<=(1/2)^n#
We can now use the direct comparison test. Since
Thus