How do you evaluate #int dx/(x^2+4x+13)# from #[-2, 2]#?
1 Answer
Nov 24, 2016
Explanation:
First without the bounds:
#I=intdx/(x^2+4x+13)#
Complete the square in the denominator.
#I=intdx/((x+2)^2+9)#
Now we can use trigonometric substitution. Let
#I=int(3sec^2thetad theta)/(9tan^2theta+9)=1/3int(sec^2thetad theta)/(tan^2theta+1)=1/3int(sec^2thetad theta)/sec^2theta#
#I=1/3intd theta=1/3theta#
From
#I=1/3arctan((x+2)/3)#
So now applying the bounds:
#I_B=int_(-2)^2dx/(x^2+4x+13)=[1/3arctan((x+2)/3)]_(-2)^2#
So
#I_B=(1/3arctan((2+2)/3))-(1/3arctan((-2+2)/3))#
#I_B=1/3arctan(4/3)#