How do you solve #sin^2x+3sinx-4=0# for #0<=x<=2pi#?

2 Answers
Nov 28, 2016

#x=3/2pi#

Explanation:

this is a quadratic eqn. in #" "sinx#

factorise if possible.

#(sinx+4)(sinx-1)=0#

#=>sinx+4=0" "#or#" "sinx-1=0#

#sinx+4=0" "=> sinx=-4#

but # -1 < sinx <1 # for #x inRR#

#:.#no real solutions for #" "sinx=-4#

#sinx-1=0" "=>sinx=1#

for # 0 < x <2pi#

#x=pi/2#

Nov 28, 2016

#pi/2#

Explanation:

Solve this quadratic equation for sin x:
#sin^2 x + 3sin x - 4 = 0#
We have a = 1, b = 3, and c = -4.
Since a + b + c = 0, use shortcut.
The 2 real roots are sin x = 1 and #sin x = c/a = -4/1 = -4#
The value sin x = -4 is rejected as < - 1.
Solve sin x = 1
trig unit circle -->
sin x = 1 --> arc #x = pi/2#
Answers for #(0,2pi)#:
x = pi/2
Check:
#x = pi/2 -> 3sin (pi/2) = 3 -> sin^2 x = 1 -> 3 + 1 - 4 = 0#. OK