How do you integrate #int(x)/((x+3)(x+6)(x+2))# using partial fractions?
1 Answer
Nov 29, 2016
Explanation:
The Partial Fraction decomposition of the integrand will be of the form:
# x/((x+3)(x+6)(x+2)) -= A/(x+3) + B/(x+6) + C/(x+2) #
# :. x/((x+3)(x+6)(x+2)) = (A(x+6)(x+2) + B(x+3)(x+2) + C(x+3)(x+6))/((x+3)(x+6)(x+2)) #
# :. x = A(x+6)(x+2) + B(x+3)(x+2) + C(x+3)(x+6) #
Put
Hence,
# x/((x+3)(x+6)(x+2)) -= 1/(x+3) - 1/(2(x+6)) - 1/(2(x+2)) #
So,
# int x/((x+3)(x+6)(x+2)) dx= int 1/(x+3) - 1/(2(x+6)) - 1/(2(x+2)) dx#
# :. int x/((x+3)(x+6)(x+2)) dx= ln|x+3| - 1/2ln|x+6| - 1/2ln|x+2| + C#