How do you find the particular solution to #(dr)/(ds)=e^(r-2s)# that satisfies r(0)=0?
1 Answer
Dec 4, 2016
Explanation:
We will want to separate the variables first, which means that we can treat
#(dr)/(ds)=e^r/e^(2s)#
Rearranging now (separating variables):
#(dr)/e^r=(ds)/e^(2s)#
Rewriting and integrating:
#inte^-rdr=inte^(-2s)ds#
Integrating both sides:
#-int-e^-rdr=-1/2int-2e^(-2s)ds#
#-e^-r=-1/2e^(-2s)+C#
We can find the constant of integration now using
#-e^0=-1/2e^0+C#
Since
#-1=-1/2+C#
#C=-1/2#
So:
#-e^-r=-1/2e^(-2s)-1/2#
Now solving for
#e^(-r)=1/2e^(-2s)+1/2=(e^(-2s)+1)/2#
#-r=ln((e^(-2s)+1)/2)#
#r=ln(2/(e^(-2s)+1))=ln((2e^(2s))/(1+e^(2s)))#
graph{ln((2e^(2x))/(1+e^(2x))) [-10, 10, -5, 5]}