How do you find the sum of the geometric series #7+21+63+...# to 10 terms?
1 Answer
Explanation:
The general term of a geometric series is given by the formula:
#a_n = a*r^(n-1)#
where
In our example,
Looking at the sum to
#(r-1) sum_(n=1)^N ar^(n-1) = r sum_(n=1)^N ar^(n-1) - sum_(n=1)^N ar^(n-1)#
#color(white)((r-1) sum_(n=1)^N ar^(n-1)) = sum_(n=2)^(N+1) ar^(n-1) - sum_(n=1)^N ar^(n-1)#
#color(white)((r-1) sum_(n=1)^N ar^(n-1)) = color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1)))) + ar^N - a - color(red)(cancel(color(black)(sum_(n=2)^N ar^(n-1))))#
#color(white)((r-1) sum_(n=1)^N ar^(n-1)) = a(r^N - 1)#
Dividing both ends by
#sum_(n=1)^N ar^(n-1) = (a(r^N - 1))/(r-1)#
In our example, we want the sum to
#sum_(n=1)^N ar^(n-1) = (a(r^N - 1))/(r-1)#
#color(white)(sum_(n=1)^N ar^(n-1))= (7(3^10 - 1))/(3-1) = (7*(59049 - 1))/2 = (7*59048)/2 = 206668#