Question #e1ae5
1 Answer
Explanation:
First, let's find the indefinite integral
#sin^2(x) = (1-cos(2x))/2# #sin(2x) = 2sin(x)cos(x)#
#=16intsin^2(x)(1/2sin(2x))^2dx#
#=4intsin^2(x)sin^2(2x)dx#
#=4int(1-cos(2x))/2sin^2(2x)dx#
#=2int(sin^2(2x)-sin^2(2x)cos(2x))dx#
#=2intsin^2(2x)dx - 2intsin^2(2x)cos(2x)dx#
Let's evaluate these integrals separately.
#=intdx - intcos(4x)dx#
#=x-sin(4x)/4+C#
For the second integral, we make the substitution
Then
#=u^3/3+C#
#=sin^3(2x)/3+C#
Putting the above together, we get
#= 2intsin^2(2x)dx - 2intsin^2(2x)cos(2x)dx#
#=x-sin(4x)/4-sin^3(2x)/3+C#
We can now evaluate the definite integral.
#=(pi/4-sin(pi)/4-sin^3(pi/2)/3)#
#-(0-sin(0)/4-sin^3(0)/3)#
#=pi/4-0/4-1/3-0+0+0#
#=pi/4-1/3#