What is the equation of the line tangent to # f(x)=1/sqrt(x^2+3x+6) # at # x=-1 #?

1 Answer
Dec 15, 2016

#y= -1/16x + 7/16#

Explanation:

Start by finding the y-coordinate of intersection.

#f(-1) = 1/sqrt((-1)^2 + 3(-1) + 6)#

#f(-1) = 1/sqrt(4)#

#f(-1) = 1/2#

Now, differentiate.

#f(x) = 1/sqrt(x^2 + 3x + 6)#

#f(x) = 1/(x^2 + 3x + 6)^(1/2)#

#f(x) = (x^2 + 3x + 6)^(-1/2)#

Let #y = u^(-1/2)# and #u = x^2 + 3x+ 6#. Then #dy/(du) = -1/2u^(-3/2)# and #(du)/dx = 2x + 3#.

#dy/dx = dy/(du) xx (du)/dx#

#dy/dx= -1/2u^(-3/2) xx (2x + 3)#

#dy/dx= -(2x + 3)/(2(x^2 + 3x + 6)^(3/2)#

The slope at #x= 1# is given by:

#dy/dx|_(x = -1) = -(2(-1) + 3)/(2(-1^2 + 3(-1) + 6)^(3/2))#

#dy/dx|_(x= -1) = -1/16#

The equation of the tangent line is therefore:

#y - y_1 = m(x- x_1)#

#y - 1/2 =-1/16(x - (-1))#

#y - 1/2 = -1/16x - 1/16#

#y = -1/16x + 7/16#

Hopefully this helps!