How do you find the maximum, minimum and inflection points and concavity for the function #y = xe^x#?

1 Answer
Dec 18, 2016
  • #x=-1# is a local minimum and the absolute minimum of the function #y=xe^x# because #y'# changes from negative to positive at #x=-1#.
  • #x=-2# is an inflection point of the function #y=xe^x# because #y''# changes from negative to positive at #x=-2#.
  • #y=xe^x# is concave down (convex) on #x in (-oo,-2)#, and concave up on #x in (-2,oo)#

Explanation:

#y=(x)(e^x)#

To find maxima and minima, find where #y'# is equal to zero:
#y'=(x)(e^x)+(1)(e^x)#
#y'=(e^x)(x+1)#
#0=(e^x)(x+1)#
#0=x+1#
#x=-1#
To check whether #x=-1# is a max or a min, use the first derivative test (plug in values less than and greater than -1):
#y'(-100)="negative"#
#y'(100)="positive"#
#x=-1# is a local minima and the absolute minimum of the function #y=xe^x# because #y'# changes from negative to positive at #x=-1#.

Do the second derivative test to find inflection points and concavity:
#y'=(e^x)(x+1)#
#y''=(e^x)(1)+(e^x)(x+1)#
#y''=(e^x)(x+2)#
#0=(e^x)(x+2)#
#0=x+2#
#x=-2#
#y''(-100)="negative"#
#y''(100)="positive"#
#x=-2# is an inflection point of the function #y=xe^x# because #y''# changes from negative to positive at #x=-2#.
#y=xe^x# is concave down (convex) on #x in (-oo,-2)#, and concave up on #x in (-2,oo)#