How do you solve #9- 9\sin \theta = 6\cos^{2}theta#?

1 Answer

#pi/6, pi/2, (5pi)/6#

Explanation:

#9 - 9sin theta = 6cos^2 theta#
Replace #cos^2 theta# by #(1 - sin^2 theta)#
#9 - 9sin theta = 6(1 - sin^2 theta) = 6 - 6sin^2 theta#
or #6sin^2 theta - 9sin theta + 3 = 0#
Solve this quadratic equation for sin theta.
Since a + b + c = 0, use shortcut. There are 2 real roots:
#sin theta = 1# and #sin theta = c/a = 3/6 = 1/2#
Use trigonomteric table of special arcs and unit circle -->
a. #sin theta = 1# --> #theta = pi/2#
b. #sin theta = 1/2# --> #theta = pi/6#, and #theta = (5pi)/6#
Answers for (#0, 2pi)#
#pi/6, pi/2, (5pi)/6#