How do you identify all asymptotes for #f(x)=(4x)/(x^2-1)#?
1 Answer
Explanation:
The denominator of f(x) cannot be zero as this would make f(x) undefined. Equating the denominator to zero and solving gives the values that x cannot be and if the numerator is non-zero for these values then they are vertical asymptotes.
solve:
#x^2-1=0rArrx^2=1rArrx=+-1#
#rArrx=-1" and " x=1" are the asymptotes"# Horizontal asymptotes occur as
#lim_(xto+-oo),f(x)toc" (a constant)"# divide terms on numerator/denominator by the highest power of x, that is
#x^2#
#f(x)=((4x)/x^2)/(x^2/x^2-1/x^2)=(4/x)/(1-1/x^2)# as
#xto+-oo,f(x)to0/(1-0)#
#rArry=0" is the asymptote"# Oblique asymptotes occur when the degree of the numerator > degree of the denominator. This is not the case here (numerator-degree 1 , denominator-degree 2) Hence there are no oblique asymptotes.
graph{(4x)/(x^2-1) [-10, 10, -5, 5]}