How do you express the value of #cos 2^o15' #, in mathematical exactitude?
1 Answer
Explanation:
If you know that
#cos(theta/2) = +-sqrt(1/2+1/2cos theta)#
We need to apply this
So:
#cos 2^@15' = sqrt(1/2 + 1/2cos 4^@30')#
#color(white)(cos 2^@15') = sqrt(1/2 + 1/2sqrt(1/2 + 1/2cos 9^@))#
#color(white)(cos 2^@15') = sqrt(1/2 + 1/2sqrt(1/2 + 1/2sqrt(1/2+1/2cos 18^@)))#
#color(white)(cos 2^@15') = sqrt(1/2 + 1/2sqrt(1/2 + 1/2sqrt(1/2+1/2sqrt(1/2+1/2cos 36^@))))#
#color(white)(cos 2^@15') = sqrt(1/2 + 1/2sqrt(1/2 + 1/2sqrt(1/2+1/2sqrt(1/2+1/2(1/4(sqrt(5)+1)))))#
This can be simplified a little, but has a pleasing form as is, which indicates the derivation.
Derivation of
Here's a derivation of the formula for
#-1 = cos 180^@ + i sin 180^@#
#color(white)(-1) = (cos 36^@ + i sin 36^@)^5#
#color(white)(-1) = (cos^5 36^@ - 10 cos^3 36^@ sin^2 36^@ + 5 cos 36^@ sin^4 36^@) + i (5cos^4 36^@ sin 36^@ - 10cos^2 36^@ sin^3 36^@ + sin^5 36^@)#
Equating Real parts:
#-1 = cos^5 36^@ - 10 cos^3 36^@ sin^2 36^@ + 5 cos 36^@ sin^4 36^@#
#color(white)(-1) = cos^5 36^@ - 10 cos^3 36^@ (1-cos^2 36^@) + 5 cos 36^@ (1-cos^2 36^@)^2#
#color(white)(-1) = 16 cos^5 36^@ - 20 cos^3 36^@ + 5 cos 36^@#
Hence
#16x^5-20x^3+5x+1 = (x+1)(16x^4-16x^3-4x^2+4x+1)#
#color(white)(16x^5-20x^3+5x+1) = (x+1)(4x^2-2x-1)^2#
We can discard
#0 = 4(4x^2-2x-1)#
#color(white)(0) = 16x^2-8x+1-5#
#color(white)(0) = (4x-1)^2-sqrt(5)^2#
#color(white)(0) = ((4x-1)-sqrt(5))((4x-1)+sqrt(5))#
#color(white)(0) = (4x-1-sqrt(5))(4x-1+sqrt(5))#
Hence:
#x = 1/4(1+-sqrt(5))#
Then since
#cos 36^@ = 1/4(sqrt(5)+1)#