How do you use the distributive law to multiply #12 xx 12# ?
1 Answer
See explanation...
Explanation:
Multiplication is distributive over addition. That is:
For any numbers
#a(b+c) = ab+ac" "# (left distributive)
#(a+b)c = ac+bc" "# (right distributive)
So we can split the multiplication of
#12 xx 12 = 12(10+2) = (12 xx 10) + (12 xx 2) = 120+24 = 144#
In fact, we are using this distributive property when we use long multiplication:
#color(white)(0+0)12color(lightgray)0" "larr 12xx1color(grey)(xx10)#
#color(white)(0)+color(white)(0)underline(color(white)(0)24)" "larr 12xx2color(grey)(xx1)#
#color(white)(0+0)144#
If you are only comfortable with multiplying numbers up to
#12 xx 12 = 12(10+2)#
#color(white)(12 xx 12) = (12 xx 10) + (12 xx 2)#
#color(white)(12 xx 12) = ((10+2) xx 10) + ((10+2) xx 2)#
#color(white)(12 xx 12) = ((10xx10)+(2xx10)) + ((10xx2)+(2xx2))#
#color(white)(12 xx 12) = (100+20) + (20+4)#
#color(white)(12 xx 12) = 100+(20+20)+4#
#color(white)(12 xx 12) = 100+40+4#
#color(white)(12 xx 12) = 144#