How do you find the first and second derivative of #y=1/(1+e^-x)#?
1 Answer
Explanation:
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(e^(-x))=-e^(-x))color(white)(2/2)|)))# There are 2 approaches to differentiating this function.
#(1)" Using the quotient rule"#
#(2)" expressing " y=(1+e^(-x))^-1" and use chain rule"# I'll use approach (1) you could perhaps try approach (2). The result will be the same.
differentiate using the
#color(blue)"quotient rule"#
#" Given " y=(g(x))/(h(x))" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))#
#g(x)=1rArrg'(x)=0#
#h(x)=1+e^(-x)rArrh'(x)=-e^(-x)#
#color(blue)"------------------------------------------------------------"#
#rArrdy/dx=((1+e^-x).0-1.(-e^-x))/(1+e^-x)^2=(e^-x)/(1+e^-x)^2#
#" To find " (d^2y)/(dx^2)" differentiate " dy/dx# differentiate using the
#color(blue)"quotient rule/chain rule"#
#"here " g(x)=e^-xrArrg'(x)=-e^-x#
#h(x)=(1+e^-x)^2rArrh'(x)=2(1+e^-x).(-e^-x)rarr#
#(d^2y)/(dx^2)=((1+e^-x)^2(-e^-x)-(e^-x).(-2e^-x(1+e^-x)))/(1+e^-x)^4#
#=(-e^-x(1+e^-x)^2+2e^(-2x)(1+e^-x))/(1+e^-x)^4#
#=(e^-x(1+e^-x)(2e^-x-1-e^-x))/(1+e^-x)^4larr" factoring"#
#=(e^-xcancel((1+e^-x))(e^-x-1))/(cancel((1+e^-x)^3#
#=(e^(-2x)-e^-x)/(1+e^-x)^3#