What is under the #sqrt# is #>=0#
But the #sqrt# is in the denominator
So,
#sqrt((x-10)(12-x))>0#
Let #f(x)=sqrt((x-10)(12-x))#
Construct the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaaaa)##10##color(white)(aaaaaaa)##12##color(white)(aaaa)##-oo#
#color(white)(aaaa)##x-10##color(white)(aaaa)##-##color(white)(aaaa)##color(red)(∣∣)##color(white)(aaa)##+##color(white)(aaa)##color(red)(∣∣)##color(white)(aa)##+#
#color(white)(aaaa)##12-x##color(white)(aaaa)##+##color(white)(aaaa)##color(red)(∣∣)##color(white)(aaa)##+##color(white)(aaa)##color(red)(∣∣)##color(white)(aa)##-#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##-##color(white)(aaaa)##color(red)(∣∣)##color(white)(aaa)##+##color(white)(aaa)##color(red)(∣∣)##color(white)(aa)##-#
Therefore,
#f(x)>0#, when #x in ] 10 ,12 [ #