How do you integrate #int sec^6(3x)#?
1 Answer
Jan 10, 2017
Explanation:
First let
#I=intsec^6(3x)dx=1/3intsec^6(3x)3dx=1/3intsec^6(u)du#
We will now make use of the identity
#I=1/3intsec^4(u)sec^2(u)du=1/3int(sec^2(u))^2sec^2(u)du#
#I=1/3int(1+tan^2(u))^2sec^2(u)du#
Now we should perform the substitution
#I=int(1+v^2)^2dv#
Expand
#I=int(1+2v^2+v^4)dv=v+2/3v^3+1/5v^5#
From
#I=tan(u)+2/3tan^3(u)+1/5tan^5(u)#
From
#I=tan(3x)+2/3tan^3(3x)+1/5tan^5(3x)+C#