What are the roots of #x^3+52x^2+1060x-4624 = 0#?
1 Answer
The real root is:
#x = 2/3(-26+root(3)(21232+3sqrt(50275887))+root(3)(21232-3sqrt(50275887)))#
There are two related complex roots.
Explanation:
#f(x) = x^3+52x^2+1060x-4624#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 3038214400-4764064000+2600685568-577297152-4587747840 = -4290209024#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3+1404x^2+28620x-124848#
#=(3x+52)^3+1428(3x+52)-339712#
#=t^3+1428t-339712#
where
Cardano's method
We want to solve:
#t^3+1428t-339712=0#
Let
Then:
#u^3+v^3+3(uv+476)(u+v)-339712=0#
Add the constraint
#u^3-107850176/u^3-339712=0#
Multiply through by
#(u^3)^2-339712(u^3)-107850176=0#
Use the quadratic formula to find:
#u^3=(339712+-sqrt((-339712)^2-4(1)(-107850176)))/(2*1)#
#=(339712+-sqrt(115404242944+431400704))/2#
#=(339712+-sqrt(115835643648))/2#
#=(339712+-48sqrt(115835643648))/2#
#=169856+-24sqrt(115835643648)#
#=8(21232+-3sqrt(50275887))#
Since this is Real and the derivation is symmetric in
#t_1=2root(3)(21232+3sqrt(50275887))+2root(3)(21232-3sqrt(50275887))#
and related Complex roots:
#t_2=2 omega root(3)(21232+3sqrt(50275887))+2 omega^2 root(3)(21232-3sqrt(50275887))#
#t_3=2 omega^2 root(3)(21232+3sqrt(50275887))+2 omega root(3)(21232-3sqrt(50275887))#
where
Now
#x_1 = 2/3(-26+root(3)(21232+3sqrt(50275887))+root(3)(21232-3sqrt(50275887)))#
#x_2 = 2/3(-26+omega root(3)(21232+3sqrt(50275887))+omega^2 root(3)(21232-3sqrt(50275887)))#
#x_3 = 2/3(-26+omega^2 root(3)(21232+3sqrt(50275887))+omega root(3)(21232-3sqrt(50275887)))#