How do you evaluate the integral #int dx/(4+x^2)#?
1 Answer
Jan 15, 2017
You may know the following rule:
#intdx/(a^2+x^2)=1/aarctan(x/a)+C#
So:
#intdx/(4+x^2)=intdx/(2^2+x^2)=1/2arctan(x/2)+C#
We can derive the
Thus,
#intdx/(a^2+x^2)=int(asec^2thetad theta)/(a^2+a^2tan^2theta)#
Factoring the
#=int(asec^2thetad theta)/(a^2(1+tan^2theta))=int(sec^2thetad theta)/(asec^2theta)=1/aintd theta#
The antiderivative of
#=1/atheta+C#
From
#=1/aarctan(x/a)+C#
Which is the above stated rule.