How do you find all solutions of the equation #cos(x+pi/4)-cos(x-pi/4)=1# in the interval #[0,2pi)#?

1 Answer
Jan 16, 2017

#(5pi)/4, (7pi)/4#

Explanation:

Use the trig identity:
#cos a - cos b = - 2sin ((a + b)/2).sin ((a - b)/2)#
In this case:
a = (x + pi)/4, and b = (x - pi/4)
(a + b) = 2x --> (a + b)/2 = x
(a - b) = pi/2 --> (a - b)/2 = pi/4
There for:
cos (x + pi/4) - cos (x - pi/4) = - 2sin x.sin (pi/4) = 1
Trig table gives --> #sin (pi/4) = sqrt2/2#, then -->
#- sqrt2.sin x = 1# --> #sin x = - 1/sqrt2 = - sqrt2/2#
Trig table and unit circle give 2 solutions:
#x = - pi/4# and #x = pi + pi/4 = (5pi)/4#
#x = - pi/4# is co-terminal to #x = (7pi)/4#.
Answers for #(0, 2pi)#
#(5pi)/4, (7pi)/4#