Could somebody please help me solve this integral?

int1/(sqrtx*(root4x + root6x))dx

2 Answers
Jan 16, 2017

4root4x-6root6x+12root12x-12ln|root12x+1|+C.

Explanation:

Observe that, the l.c.m. of 2,4 and 6 is 12, so, let us substitute

x=y^12,"so that, "dx=12y^11dy.

Hence, I=int1/{sqrtx(root4x+root6x)}dx

=int(12y^11)/{y^6(y^3+y^2)}dy=12inty^3/(y+1)dy

=12int{(y^3+1)-1}/(y+1)dy

=12int{(y^3+1)/(y+1)-1/(y+1)}dy

=12int{(y+1)(y^2-y+1)}/(y+1)dy-12int1/(y+1)dy

=12int(y^2-y+1)dy-12ln|y+1|

=12(y^3/3-y^2/2+y)-12ln|y+1|

=4y^3-6y^2+12y-12ln|y+1|, and, because, y=x^(1/12),

=4x^(1/4)-6x^(1/6)+12x^(1/12)-12ln|x^(1/12)+1|.

:. I=4root4x-6root6x+12root12x-12ln|root12x+1|+C.

Spread the Joy of Maths.!

Jan 16, 2017

int (dx)/(sqrt(x)(root(4)x+root(6)x)) = 4(1+x^(1/12))^3-18(1+x^(1/12))^2+16+16x^(1/12)-12 ln abs (1+x^(1/12)) +C

Explanation:

Simplify the expression of the integrand function:

int (dx)/(sqrt(x)(root(4)x+root(6)x)) = int (dx)/(x^(1/2)(x^(1/4)+x^(1/6)) )= int (dx)/(x^(1/2)x^(1/6)(x^(1/4-1/6)+1) )= int(dx)/(x^(2/3)(1+x^(1/12))

Substitute:

t= x^(1/12)

x= t^12

dx = 12t^11dt

int (dx)/(sqrt(x)(root(4)x+root(6)x)) = int (12t^11dt)/(t^8(1+t)) = 12 int (t^3dt)/(1+t)

Substitute:

u= 1+t

du = dt

int (dx)/(sqrt(x)(root(4)x+root(6)x)) = int (12t^11dt)/(t^8(1+t)) = 12 int ((u-1)^3du)/u = 12 int (u^3-3u^2+3u-1)/u du = 12 int (u^2-3u+3-1/u) du = 4u^3-18u^2+36u-12lnabs(u)+C

Substituting back:

u = 1+t = 1+x^(1/12)

int (dx)/(sqrt(x)(root(4)x+root(6)x)) = 4(1+x^(1/12))^3-18(1+x^(1/12))^2+16+16x^(1/12)-12 ln abs (1+x^(1/12)) +C

You can then develop and simplify the powers to have a more compact expression.