How do you simplify #\frac { \frac { 1} { 3x ^ { 2} - 3} } { \frac { 5} { x + 1} - \frac { x + 4} { x ^ { 2} - 3x - 4} }#?

1 Answer
Jan 17, 2017

#(1/(3x^2-3))/(5/(x+1)-(x+4)/((x+1)(x-4)))=(x-4)/(12x^2-84x+72)#

Explanation:

We can factorize #x^2-3x-4# by splitting middle term as

#x^2-4x+x-4=x(x-4)+1(x-4)=(x+1)(x-4)#

Therefore the denominator is #5/(x+1)-(x+4)/((x+1)(x-4))#

= #(5(x-4)-(x+4))/((x+1)(x-4))#

= #(4x-24)/((x+1)(x-4))#

and numerator is #1/(3x^2-3)=1/(3(x^2-1))=1/(3(x-1)(x+1))#

Hence #(1/(3x^2-3))/(5/(x+1)-(x+4)/((x+1)(x-4)))#

= #(1/(3(x-1)(x+1)))/((4x-24)/((x+1)(x-4)))#

= #1/(3(x-1)(x+1))xx((x+1)(x-4))/((4x-24)#

= #1/(3(x-1)cancel((x+1)))xx(cancel((x+1))(x-4))/(4(x-6)#

= #(x-4)/(12(x-1)(x-6))#

= #(x-4)/(12(x^2-7x+6))#

= #(x-4)/(12x^2-84x+72)#