How do you find the zeros of #f(x)=x^3+3x^2+6x+4#?
1 Answer
Jan 17, 2017
Explanation:
Given:
#f(x) = x^3+3x^2+6x+4#
Note that
#x^3+3x^2+6x+4 = (x+1)(x^2+2x+4)#
We can factor the remaining quadratic by completing the square and using the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#x^2+2x+4 = x^2+2x+1+3#
#color(white)(x^2+2x+4) = (x+1)^2-(sqrt(3)i)^2#
#color(white)(x^2+2x+4) = ((x+1)-sqrt(3)i)((x+1)+sqrt(3)i)#
#color(white)(x^2+2x+4) = (x+1-sqrt(3)i)(x+1+sqrt(3)i)#
Hence the other two zeros are:
#x = -1+-sqrt(3)i#