How do you evaluate the integral #int x^2/(16+x^2)#?
1 Answer
Jan 20, 2017
I got:
#x - 4arctan(x/4) + C#
Using a trick:
#int (16 + x^2 - 16)/(16 + x^2)dx#
#= int dx - 16int 1/(16 + x^2)dx#
#= int dx - int 1/(1 + (x/4)^2)dx#
Now, for the second integral only, we would let
#= int dx - 4int 1/4 1/(1 + (x/4)^2)dx#
#= int dx - 4int 1/(1 + u^2)dx#
Now, if we recognize that
#=> int dx - 4arctanu#
#= color(blue)(x - 4arctan(x/4) + C)#