How do you evaluate the integral #int 4^xsin(4^x)#?
1 Answer
Jan 20, 2017
Explanation:
Because there are two
Differentiate using logarithmic differentiation.
#lnu = ln(4^x)#
#1/u(du) = ln4dx#
#du = u ln4dx#
#du = 4^xln4dx#
#(du)/(4^xln4) = dx#
Now substitute:
#int4^xsinu * (du)/(4^xln4)#
#1/ln4intsinudu#
#-1/ln4cosu + C#
#-1/ln4cos(4^x) + C#
Hopefully this helps!