Write #x# as:
#x = -1+xi = xi-1#
and evaluate:
#abs (f(x)-L) = abs ((xi-1 + 5)/(2(xi-1) + 3 )- L) = abs ((xi+4)/(2xi+1) -L) =abs ((xi+4-2xi L -L)/(2xi+1) ) = abs ((xi(1-2L)+(4-L))/(2xi+1) ) <= abs( (xi(1-2L))/(2xi+1) ) +abs ((4-L)/(2xi+1)) #
We see that if we set #L=4# the second term vanishes and:
#abs (f(x)-4) <= abs( (-7xi)/(2xi+1) )= (7abs(xi)) /abs(1 +2 xi) #
So for any given #epsilon > 0# we can choose #delta_epsilon > 0# such that
#delta_epsilon < min(1/2, epsilon /7)#
Now for #abs(xi) < delta_epsilon# we have:
#xi > -1/2 => abs (1+2x) > 1#
so that:
#abs (f(x)-4) <= (7abs(xi)) /abs(1 +2 xi) < 7abs(xi)#
#abs(xi) < epsilon/7 => abs (f(x)-4) <= 7abs(xi) < epsilon#
and we have proved that:
#lim_(x->-1) (x+5)/(2x+3) = 4#