#x^2y + xy = 6#. Find #dx/dy#?

2 Answers
Jan 24, 2017

#dx/dy=-(x^2(x+1)^2)/(6(2x+1))#.

Explanation:

#x^2y+xy=6#

Treating #x# as a function of #y#, we get:

#=>d/dy (x^2y)+d/dy (xy)=d/dy(6)#
#=>[(d(x^2))/dy*y+x^2* (d(y))/dy]+[(d(x))/dy*y + x*(d(y))/dy]=0#

Let #x'=dx/dy#.

#=>2x x'y+x^2(1)+x'y+x(1)=0#
#=>2x x'y+x'y+x^2+x=0#
#=>x'(2xy+y)="-"(x^2+x)#
#=>x'=-(x^2+x)/(2xy+y)=-(x(x+1))/(y(2x+1))#

Also:
#x^2y+xy=6#

#=>y(x^2+x)=6#
#=>y=6(x^2+x)^"-1"=6/(x(x+1))#

Substituting this into our equation for #x'# gives us

#x'=-(x(x+1))/([6/(x(x+1))] (2x+1))#

#color(white)(x')=-(x^2(x+1)^2)/(6(2x+1))#

Another way:

We could also recognize that, since #y=6/(x(x+1))#, we have

#dy/dx=6("-"1)(x^2+x)^"-2"(2x+1)=-(6(2x+1))/((x^2+x)^2)#

And reciprocating this gives

#dx/dy=-(x^2+x)^2/(6(2x+1))=-([x(x+1)]^2)/(6(2x+1))=-(x^2(x+1)^2)/(6(2x+1))#

as before.

Jan 24, 2017

I got:

#(dx)/(dy) = -(x^2+x)/(2xy + y)#


A nice trick is to recognize that #(dy)/(dx) = 1/((dx)/(dy))#. Let's try both ways (finding #(dy)/(dx)# and taking the reciprocal, vs. finding #(dx)/(dy)#).

#f(x,y) = x^2y + xy = 6#

From the chain rule, #(df)/(dx) = (df)/(dy)(dy)/(dx)#, so, using the product rule twice:

#=> (x^2(d)/(dy) [y]cdot(dy)/(dx) + (d)/(dx) [x^2]y) + (x(d)/(dy) [y]cdot(dy)/(dx) + y(d)/(dx) [x]) = 0#

#=> (x^2(dy)/(dx) + 2xy) + (x(dy)/(dx) + y) = 0#

#=> x^2(dy)/(dx) + x(dy)/(dx) = -2xy - y#

#=> (dy)/(dx)[x^2 + x] = -(2xy + y)#

#=> (dy)/(dx) = -(2xy + y)/[x^2 + x]#

So, #color(blue)((dx)/(dy) = -(x^2+x)/(2xy + y))#.

Let's check the other way. If #x = x(y)#, then, using the product rule twice:

#=> (x^2 (d)/(dy) [y] + y d/(dx) [x^2]cdot(dx)/(dy)) + (x(d)/(dy) [y] + y(d)/(dx) [x]cdot(dx)/(dy)) = 0#

#=> (x^2 + 2xy(dx)/(dy)) + (x + y(dx)/(dy)) = 0#

#=> 2xy(dx)/(dy) + y(dx)/(dy) = -x - x^2#

#=> (dx)/(dy)[2xy + y] = -(x + x^2)#

#=> color(blue)((dx)/(dy) = -(x + x^2)/[2xy + y])#

Indeed, same result both ways.