Write the expression as:
#(x/(2+x))^(x-2) = 1/((x/(2+x))^(-(x-2))) = ((x+2)/x)^(2-x) = (1+2/x)^(2-x)#
Now take the logarithm of this expression:
#ln((x/(2+x))^(x-2)) = (2-x)ln(1+2/x) = 2ln(1+2/x)-xln(1+2/x)#
We can see that:
#lim_(x->oo) 2ln(1+2/x) = 2ln(1) = 0#
so we can ignore this term.
Focusing on the other addendum we have:
#xln(1+2/x) = 2 ln(1+2/x)/(2/x)#
Substituting #y=2/x# we have #lim_(x->oo) y(x) = 0# so that:
#lim_(x->oo) ln(1+2/x)/(2/x) = lim_(y->0) ln (1+y)/y = 1#
(you can find the explanation here )
Putting this together we can see that:
#lim_(x->oo) ln((x/(2+x))^(x-2)) = lim_(x->oo) 2ln(1+2/x)-xln(1+2/x) = 0-2*1 =-2#
Now note that:
#e^(ln((x/(2+x))^(x-2)))=(x/(2+x))^(x-2)#
so that:
#lim_(x->oo) (x/(2+x))^(x-2) = lim_(x->oo) (e^(ln((x/(2+x))^(x-2))))#
and as #e^x# is continuous in all of #RR#:
#lim_(x->oo) (x/(2+x))^(x-2) = e^(lim_(x->oo) (ln((x/(2+x))^(x-2)))) = e^(-2) = 1/e^2#