How do you solve #|-5x + -2| + 3 = 11#?
1 Answer
Jan 26, 2017
Explanation:
Equations involving the
#color(blue)"absolute value"# have 2 solutions.Isolate the absolute value, noting that
#-5x+ -2=-5x-2# subtract 3 from both sides.
#|-5x-2|cancel(+3)cancel(-3)=11-3#
#rArr|-5x-2|=8# The 2 solutions are obtained by solving
#-5x-2=color(red)(+-)8#
#color(blue)"Solution 1"#
#-5x-2=8# add 2 to both sides.
#-5xcancel(-2)cancel(+2)=8+2#
#rArr-5x=10rArrx=10/(-5)=-2#
#color(blue)"Solution 2"#
#-5x-2=-8# add 2 to both sides.
#-5x=-8+2#
#rArr-5x=-6rArrx=(-6)/(-5)=6/5#
#color(blue)"As a check"#
#"left side "=|(-5xx-2)-2|+3=|8|+3=8+3=11 ✔︎#
#"left side "=|(-cancel(5)^1xx6/cancel(5)^1)-2|+3#
#=|-6-2|+3=|-8|+3=8+3=11 ✔︎#