How do you use the angle sum or difference identity to find the exact value of #csc(pi/3+pi/4)#?
1 Answer
Feb 1, 2017
# csc(pi/3+pi/4) = 4/(sqrt(2)(1+sqrt(3))) #
Explanation:
Using the summation formula:
# sin(A+B)=sinAcosB+cosAsinB#
We have:
# sin(pi/3+pi/4)= sin(pi/3)cos(pi/4)+cos(pi/3)sin(pi/4)#
# " "= sqrt(3)/2sqrt(2)/2+1/2sqrt(2)/2#
# " "= (sqrt(2)(1+sqrt(3)))/4#
Then;
# csc(pi/3+pi/4) = 1/sin(pi/3+pi/4) #
# " "= 4/(sqrt(2)(1+sqrt(3))) #
Which can easily be confirmed with a calculator.