How do you find all zeros of #f(x)=2x^4-2x^2-40#?
1 Answer
Feb 5, 2017
Explanation:
Given:
#f(x) = 2x^4-2x^2-40#
We can first treat this as a quadratic in
#a^2-b^2 = (a-b)(a+b)#
as follows:
#f(x) = 2x^4-2x^2-40#
#color(white)(f(x)) = 2((x^2)^2-x^2-20)#
#color(white)(f(x)) = 2(x^2-5)(x^2+4)#
#color(white)(f(x)) = 2(x^2-(sqrt(5))^2)(x^2-(2i)^2)#
#color(white)(f(x)) = 2(x-sqrt(5))(x+sqrt(5))(x-2i)(x+2i)#
Hence zeros:
#x = +-sqrt(5)" "# or#" "x = +-2i#