How do you find the interval of convergence #Sigma (3^n+4^n)x^n# from #n=[0,oo)#?

2 Answers
Feb 7, 2017

The series:

#sum_(n=0)^oo (3^n+4^n)x^n#

is absolutely convergent in the interval #x in (-1/4,1/4)#.

Explanation:

You can use the ratio test, evaluating:

#abs(a_(n+1)/a_n) = abs(((3^(n+1)+4^(n+1))x^(n+1))/((3^n+4^n)x^n))#

#abs(a_(n+1)/a_n) = ((3^(n+1)+4^(n+1)))/((3^n+4^n))abs(x)#

#abs(a_(n+1)/a_n) = 4^(n+1)/4^n((3/4)^(n+1)+1)/((3/4)^n+1)abs(x)#

#abs(a_(n+1)/a_n) = 4((3/4)^(n+1)+1)/((3/4)^n+1)abs(x)#

and passing to the limit for #n->oo#:

#lim_(n->oo) abs(a_(n+1)/a_n) = 4abs(x)#

So the series is absolutely convergent for #abs(x) < 1/4# and divergent for #abs(x) > 1/4#.

As usual, the case where #lim_(n->oo) abs(a_(n+1)/a_n) = 1# must be examined separately:

  1. For #x = 1/4# the series becomes:

#sum_(n=0)^oo (3^n+4^n)/4^n = sum_(n=0)^oo[ (3/4)^n+1]#

which clearly is divergent as #s_n > n#, where #s_n# is the #n#-th partial sum.

  1. For #x = -1/4# the series becomes:

#sum_(n=0)^oo (-1)^n(3^n+4^n)/4^n = sum_(n=0)^oo(-1)^n[ (3/4)^n+1]#

We can see that this series is not convergent as:

#abs(s_(n+1) = s_n) = (3/4)^(n+1) +1 > 1#

so that the series does not satisfy Cauchy's convergence test.

Feb 8, 2017

#sum_(n=0)^oo(3^n+4^n)x^n=1/(1-3x)+1/(1-4x)# for #x in(-1/4,1/4)#

Explanation:

#sum_(n=0)^oo(3^n+4^n)x^n=sum_(n=0)^oo(3x)^n+sum_(n=0)^oo(4x)^n#

#sum_(n=0)^m(3x)^n = ((3x)^(m+1)-1)/(3x-1)#

#sum_(n=0)^m(4x)^n = ((4x)^(m+1)-1)/(4x-1)#

Defining #I_3=abs(3x) < 1# and #I_4 = abs(4x)<1# we have

#I_4 sub I_3#

Now regarding #sum_(n=0)^m(4x)^n# we now that if #x in I_4# we have

#lim_(m->oo)sum_(n=0)^m(4x)^n=-1/(4x-1)=1/(1-4x)# and

#lim_(m->oo)sum_(n=0)^m(3x)^n=-1/(3x-1)=1/(1-3x)#

Finally we have that

#sum_(n=0)^oo(3^n+4^n)x^n=1/(1-3x)+1/(1-4x)# for #x in I_4#