How do you find the derivative of #sinx/e^x#?
1 Answer
Feb 8, 2017
Explanation:
differentiate using the
#color(blue)"quotient rule"#
#"Given "f(x)=(g(x))/(h(x))" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2)color(white)(2/2)|)))to(A)#
#"here " f(x)=(sinx)/e^x#
#g(x)=sinxrArrg'(x)=cosx#
#"and "h(x)=e^xrArrh'(x)=e^x# Substituting these values into (A)
#f'(x)=(e^x(cosx)-sinx(e^x))/e^(2x)#
#rArrf'(x)=(e^x(cosx-sinx))/e^(2x)=(cosx-sinx)/e^x#