Question #e30bc

1 Answer
Feb 17, 2017

#int_0^x [t]dt = ( [x] (2x- [x]-1))/2# for #x > 0#

Explanation:

Define the function as:

#[x] = n# for #n<=x<(n+1)#

The function is continuous almost everywhere, that is in all #RR-ZZ#

Consider #x>0# and # [x] = N#, its integral can be calculated as:

#int_0^x [t]dt = int_0^1 0*dt + int_1^2 1*dt + ... + int_(N-1)^N (N-1)dt + int_N^x Ndt#

#int_0^x [t]dt = 1+2+...+(N-1)+N(x-N)#

#int_0^x [t]dt = (N(N-1))/2 +Nx-N^2#

#int_0^x [t]dt = (N^2-N+2Nx-2N^2)/2#

#int_0^x [t]dt = (N(2x-1)-N^2)/2#

#int_0^x [t]dt = (N(2x-N-1))/2#

Consider #x<0# and # [x] = -N#, its integral can be calculated as:

#int_0^x [t]dt = -int_x^(-N) (-N-1)*dt - int_(-N)^(-N+1) -N*dt + ... - int_(-1)^0 (-1)dt#

#int_0^x [t]dt = 1+2+...+N+(N+1)(x-N)#

#int_0^x [t]dt = (N(N+1))/2 +Nx-N^2+x-N#

#int_0^x [t]dt = (N^2+N+2Nx-2N^2+2x-2N)/2#

#int_0^x [t]dt = (N(2x-1)-N^2+2x)/2#

#int_0^x [t]dt = x+(N(2x-N-1))/2#