How do you integrate #int tcsctcott# by parts?
1 Answer
Feb 18, 2017
Explanation:
Let
Through integration by parts, we have:
#intudv = uv - intvdu#
#inttcsctcottdt = t(-csct) - int(-csctdt)#
#inttcsctcottdt = -tcsct + intcsctdt#
The integral of
#inttcsctcottdt = -tcsct - ln|csct + cott| + C#
Hopefully this helps!