#(1 + sec^2x) / (1 + tan^2x) = 1 + cos^2x# ?
1 Answer
Feb 21, 2017
See explanation...
Explanation:
Use:
#sec x = 1/cos x#
#tan x = sin x / cos x#
#cos^2 x + sin^2 x = 1#
Then:
#(1+sec^2x)/(1+tan^2x) = (1+sec^2x)/(1+tan^2x)*cos^2x/cos^2x#
#color(white)((1+sec^2x)/(1+tan^2x)) = (cos^2x+1)/(cos^2x+sin^2x)#
#color(white)((1+sec^2x)/(1+tan^2x)) = (cos^2x+1)/1#
#color(white)((1+sec^2x)/(1+tan^2x)) = 1+cos^2x#