How do you find the derivative of #f(x)=3(x^(−2))# using the limit definition?
1 Answer
Note that
#f(x)=3x^-2=3/x^2#
The limit definition of the derivative states that the derivative of
#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#
So, where
#f'(x)=lim_(hrarr0)(3/(x+h)^2-3/x^2)/h#
Getting a common denominator:
#f'(x)=lim_(hrarr0)((3x^2-3(x+h)^2)/(x^2(x+h)^2))/h#
Rearranging:
#f'(x)=lim_(hrarr0)(3x^2-3(x+h)^2)/(h(x^2)(x+h)^2)#
Expanding the numerator:
#f'(x)=lim_(hrarr0)(3x^2-3(x^2+2hx+h^2))/(h(x^2)(x+h)^2)#
#f'(x)=lim_(hrarr0)(3x^2-3x^2-6hx-3h^2)/(h(x^2)(x+h)^2)#
#f'(x)=lim_(hrarr0)(-6hx-3h^2)/(h(x^2)(x+h)^2)#
We can factor and cancel an
#f'(x)=lim_(hrarr0)(h(-6x-3h))/(h(x^2)(x+h)^2)#
#f'(x)=lim_(hrarr0)(-6x-3h)/(x^2(x+h)^2)#
We can now evaluate the limit by plugging in
#f'(x)=(-6x-0)/(x^2(x+0)^2)#
#f'(x)=(-6x)/(x^2(x^2))#
#f'(x)=(-6)/x^3#
#f'(x)=-6x^-3#