How do you find the derivative of #f(x)=3(x^(−2))# using the limit definition?

1 Answer
Feb 21, 2017

Note that

#f(x)=3x^-2=3/x^2#

The limit definition of the derivative states that the derivative of #f# is

#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#

So, where #f(x)=3/x^2#, then:

#f'(x)=lim_(hrarr0)(3/(x+h)^2-3/x^2)/h#

Getting a common denominator:

#f'(x)=lim_(hrarr0)((3x^2-3(x+h)^2)/(x^2(x+h)^2))/h#

Rearranging:

#f'(x)=lim_(hrarr0)(3x^2-3(x+h)^2)/(h(x^2)(x+h)^2)#

Expanding the numerator:

#f'(x)=lim_(hrarr0)(3x^2-3(x^2+2hx+h^2))/(h(x^2)(x+h)^2)#

#f'(x)=lim_(hrarr0)(3x^2-3x^2-6hx-3h^2)/(h(x^2)(x+h)^2)#

#f'(x)=lim_(hrarr0)(-6hx-3h^2)/(h(x^2)(x+h)^2)#

We can factor and cancel an #h#:

#f'(x)=lim_(hrarr0)(h(-6x-3h))/(h(x^2)(x+h)^2)#

#f'(x)=lim_(hrarr0)(-6x-3h)/(x^2(x+h)^2)#

We can now evaluate the limit by plugging in #0# for #h#, since there's no longer the issue of #h# in the denominator.

#f'(x)=(-6x-0)/(x^2(x+0)^2)#

#f'(x)=(-6x)/(x^2(x^2))#

#f'(x)=(-6)/x^3#

#f'(x)=-6x^-3#